

§ 2.2 Load-Line Analysis

PROBLEMS

- 1. (a) Using the characteristics of Fig. 2.131b, determine I_D , V_D , and V_R for the circuit of Fig. 2.131a.
 - (b) Repeat part (a) using the approximate model for the diode and compare results.
 - (c) Repeat part (a) using the ideal model for the diode and compare results.

Figure 2.131 Problems 1, 2

Figure 2.132 Problems 2, 3

- **2.** (a) Using the characteristics of Fig. 2.131b, determine I_D and V_D for the circuit of Fig. 2.132.
 - (b) Repeat part (a) with $R = 0.47 \text{ k}\Omega$.
 - (c) Repeat part (a) with $R = 0.18 \text{ k}\Omega$.
 - (d) Is the level of V_D relatively close to 0.7 V in each case?

How do the resulting levels of I_D compare? Comment accordingly.

- 3. Determine the value of R for the circuit of Fig. 2.132 that will result in a diode current of 10 mA if E = 7 V. Use the characteristics of Fig. 2.131b for the diode.
- **4.** (a) Using the approximate characteristics for the Si diode, determine the level of V_D , I_D , and V_R for the circuit of Fig. 2.133.
 - (b) Perform the same analysis as part (a) using the ideal model for the diode.
 - (c) Do the results obtained in parts (a) and (b) suggest that the ideal model can provide a good approximation for the actual response under some conditions?

Figure 2.133 Problem 4

Problems 103

§ 2.4 Series Diode Configurations with DC Inputs

5. Determine the current *I* for each of the configurations of Fig. 2.134 using the approximate equivalent model for the diode.

Figure 2.134 Problem 5

6. Determine V_o and I_D for the networks of Fig. 2.135.

Figure 2.135 Problems 6, 49

* 7. Determine the level of V_o for each network of Fig. 2.136.

Figure 2.136 Problem 7

* 8. Determine V_o and I_D for the networks of Fig. 2.137.

Figure 2.137 Problem 8

* 9. Determine V_{o_1} and V_{o_2} for the networks of Fig. 2.138.

Figure 2.138 Problem 9

§ 2.5 Parallel and Series-Parallel Configurations

10. Determine V_o and I_D for the networks of Fig. 2.139.

Figure 2.139 Problems 10, 50

* 11. Determine V_o and I for the networks of Fig. 2.140.

Figure 2.140 Problem 11

Problems 105

- **12.** Determine V_{o_1} , V_{o_2} , and I for the network of Fig. 2.141.
- * 13. Determine V_o and I_D for the network of Fig. 2.142.

Figure 2.141 Problem 12

Figure 2.142 Problems 13, 51

Figure 2.143 Problem 18

§ 2.6 AND/OR Gates

- **14.** Determine V_o for the network of Fig. 2.38 with 0 V on both inputs.
- **15.** Determine V_o for the network of Fig. 2.38 with 10 V on both inputs.
- **16.** Determine V_o for the network of Fig. 2.41 with 0 V on both inputs.
- 17. Determine V_o for the network of Fig. 2.41 with 10 V on both inputs.
- **18.** Determine V_o for the negative logic OR gate of Fig. 2.143.
- **19.** Determine V_o for the negative logic AND gate of Fig. 2.144.
- **20.** Determine the level of V_o for the gate of Fig. 2.145.
- **21.** Determine V_o for the configuration of Fig. 2.146.

Figure 2.144 Problem 19

Figure 2.145 Problem 20

Figure 2.146 Problem 21

§ 2.7 Sinusoidal Inputs; Half-Wave Rectification

Figure 2.147 Problems 22, 23, 24

- **22.** Assuming an ideal diode, sketch v_i , v_d , and i_d for the half-wave rectifier of Fig. 2.147. The input is a sinusoidal waveform with a frequency of 60 Hz
- **23.** Repeat Problem 22 with a silicon diode $(V_T = 0.7 \text{ V})$.
- **24.** Repeat Problem 22 with a 6.8-k Ω load applied as shown in Fig. 2.148. Sketch v_L and i_L .
- **25.** For the network of Fig. 2.149, sketch v_o and determine $V_{\rm dc}$.

Figure 2.148 Problem 24

Figure 2.149 Problem 25