Department of Electronics & Communication Engineering

Faculty of Engineering, Integral University, Lucknow

Assignment Sheet 1

Information Theory & Coding (EC-031)

Faculty : Shrish Bajpai

Due Date : February 04, 2015

Problems: 10

- 1. One of five possible messages Q_1 to Q_5 having their probabilities $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{16}$, respectively, is transmitted. Calculate the average entropy.
- Let messages Q₁, ..., Q_M have probabilities p₁, ..., p_M of occurring.
 (a). Write final mathematical expression for Entropy.
 - (b). If M = 3, write H in terms of $p_1 \& p_2$, by using the result that $p_1 + p_2 + p_3 = 1$
 - (c). Find $p_1 \& p_2$ for $H = H_{max}$, by setting $\frac{\partial H}{\partial p_1} = 0 \& \frac{\partial H}{\partial p_2} = 0$.
- 3. A code is composed of dots and dashes. Let assume that the dash is 3 times as long as dot and has one third the probability of occurrence.
 - (a). Calculate the information in dot and dash.
 - (b). Calculate the average information in the dot-dash code.

(c). Assume that a dot last for 10 millisecond and that this same time interval is allowed between the symbols. Calculate the average rate of information transmission.

- 4. Consider the binary symmetric channel where $P(X_0) = \alpha \& P(X_1) = (1 \alpha)$. Value of P_{01} is (1-p) & P_{11} is p.
 - (a). Average mutual information between the channel input and output.
 - (b). Channel Capacity
- 5. Verify that $0 \leq H(X) \leq \log_2 m$
- 6. Develop Shannon Fanon Code for the first problem.
- 7. Develop Huffman Code for the first problem and compare the result with above problem.
- 8. A voice graded channel of telephone network has a bandwidth of 3.4 KHz.

(a). Calculate the information capacity of the telephone channel for a signal to noise ration of 30 dB.

(b). Calculate the minimum signal to noise ration required to support information transmission through the telephone channel at the rate of 9600 b/s.

9. A discrete memory less source has as alphabet of seven symbol whose probabilities of occurrence are as described here :

Symbol	<i>s</i> ₀	<i>s</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄	\$ ₅	<i>s</i> ₆
Probability	0.25	0.25	0.125	0.125	0.125	0.0625	0.0625

Compute the Huffman code for this source, moving a "combined" symbol as high as possible. Explain why the computed source code has an efficiency of 100 percent.

10. Consider a AWGN channel with 5 KHz bandwidth and with the noise power spectral density $\eta/2 = 10^{-12}$ Watt/Hz. The signal power required at the receiver is 0.1 mill watt. Calculate the capacity of this channel.