Department of Electronics \& Communication Engineering
 Faculty of Engineering, Integral University, Lucknow
 Assignment Sheet 4
 Information Theory \& Coding (EC-031)

Faculty : Shrish Bajpai

Due Date : April 02, 2015
Problems : 10

1. Write a short notes of "Extension of zero memory source". Give the example of the same.
2. Prove the following expression

$$
\mathrm{I}(\mathrm{X} ; \mathrm{Y}) \geq 0
$$

3. Explain and prove the converse of coding theorem.
4. It is given in the markov process
$\mathrm{P}_{1}=1 / 2 \quad \& \mathrm{P}_{2}=1 / 2$
$\mathrm{P}_{11}=(3 / 4), \mathrm{P}_{12}=(1 / 4), \mathrm{P}_{21}=(1 / 4) \& \mathrm{P}_{22}=(3 / 4)$
Find out the following terms.
(A) Entropy of the source
(B) Draw the tree diagram
(C) Probabilities of message of length 1 , length $2 \&$ length 3 .
(D) Information of the messages of length 2
(E) Average information per symbol in message of length 2.
5. In a markov process it is given
$P_{1}=1 / 3, P_{2}=1 / 3 \quad \& P_{3}=1 / 3$
$\mathrm{P}_{11}=1 / 2, \mathrm{P}_{22}=1 / 2, \mathrm{P}_{33}=1 / 2, \mathrm{P}_{12}=1 / 4, \mathrm{P}_{13}=1 / 4, \mathrm{P}_{21}=1 / 4, \mathrm{P}_{23}=1 / 4, \mathrm{P}_{31}=1 / 4 \& \mathrm{P}_{32}=1 / 4$
Draw the graph(state diagram) of the markov source.
Find out the following parameters.
(A) Entropy of each state H_{i}
(B) Entropy of the source
(C) $\mathrm{G}_{1} \& \mathrm{G}_{2}$
(D) Verify $\mathrm{G}_{1} \geq \mathrm{G}_{2} \geq \mathrm{H}$
6. Derive the mathematical expression for the capacity of a binary symmetric channel.
7. Show that
$\mathrm{H}(\mathrm{X}, \mathrm{Y})=\mathrm{H}(\mathrm{X} / \mathrm{Y})+\mathrm{H}(\mathrm{Y})$
8. In the Binary Erasure Channel

Calculate the following :
(A) Average Mutual Information
(B) Channel Capacity
(C) Values of $\mathrm{P}\left(\mathrm{X}_{1}\right) \& P\left(\mathrm{X}_{2}\right)$ for maximum mutual information.
9. Consider a binary symmetric channel with the following terms
$\mathrm{P}\left(\mathrm{X}_{1}\right)=\mathrm{p} \& \mathrm{P}\left(\mathrm{X}_{2}\right)=(1-\mathrm{p})$
$\mathrm{P}\left(\mathrm{Y}_{1} / \mathrm{X}_{2}\right)=\mathrm{P}\left(\mathrm{Y}_{2} / \mathrm{X}_{1}\right)=\alpha$
$\mathrm{P}\left(\mathrm{Y}_{2} / \mathrm{X}_{2}\right)=\mathrm{P}\left(\mathrm{Y}_{1} / \mathrm{X}_{1}\right)=(1-\alpha)$
Calculate the value of $\mathrm{H}(\mathrm{X}), \mathrm{H}(\mathrm{Y}), \mathrm{H}(\mathrm{Y} / \mathrm{X}) \& \mathrm{I}(\mathrm{X} ; \mathrm{Y})$ in terms of $\mathrm{p} \& \alpha$.
10. Write down short notes on prefix coding.

