Integral University, Lucknow

I Mid Semester Examination 2012-2013
 INFORMATION THEORY AND CODING (EC-031)

Year : Final Year Electronics \& Communication Engineering

Maximum Marks: 30
Time: 90 Minutes
Note: Attempt any three questions. Make figures, data sheets \& graphs where it needed.

1. A discrete memoryless source has a alphabet of seven symbol whose probabilities of occurrence are as described here :

Symbol	s_{0}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}
Probability	0.25	0.25	0.125	0.125	0.125	0.0625	0.0625

Compute the Huffman code for this source for the above.
2. Consider a Binary Symmetric Channel shown in the Fig 1.1 is emitting two symbols $x_{1} \& x_{2}$ and it's symbol emitting probability respectively is given as $\mathrm{p} \&(1-\mathrm{p})$.

Fig 1.1 : Binary Symmetric Channel
Calculate the following parameters
(a). $\mathrm{H}(\mathrm{X})$
(b). $\mathrm{H}(\mathrm{Y})$
(c). $\mathrm{H}(\mathrm{X} / \mathrm{Y})$
(d). $\mathrm{H}(\mathrm{Y} / \mathrm{X})$
(e). $\mathrm{I}(\mathrm{X} ; \mathrm{Y})$
3. Write short notes on the ISBN codes \& bar codes.
4. Explain Shannon theorem with it's mathematical expressions in detail.
5. One of five possible messages Q_{1} to Q_{5} having their probabilities $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{16}$, respectively, is transmitted. Calculate the average entropy \& design a codebook by using Shannon Fanon coding.

Integral University, Lucknow

II Mid Semester Examination 2012-2013

INFORMATION THEORY AND CODING (EC-031)

Year : Final Year Electronics \& Communication Engineering
Maximum Marks: 30
Time : 90 Minutes
Note: Attempt any three questions. Make figures, data sheets \& graphs where it needed.

1. Let a systematic block code whose parity check equations are given as

$$
\begin{aligned}
& p_{1}=m_{1} \oplus m_{2} \oplus m_{4} \\
& p_{2}=m_{1} \oplus m_{3} \oplus m_{4} \\
& p_{3}=m_{1} \oplus m_{2} \oplus m_{3} \\
& p_{4}=m_{2} \oplus m_{3} \oplus m_{4}
\end{aligned}
$$

where m_{i} are the message digits \& p_{i} are the check digits. Calculate the following
(I). Generator matrix \& Parity check matrix of the above code.
(II). Calculate all code vectors
(III). Are the vector $10101010 \& 01011100$ the code vector.
2. Consider the convolutional encoder shown in the Fig 1 as below mention.

Fig 1
(I). Write the connection vectors and polynomial for this encoder.
(II). Draw the state diagram, tree diagram \& trellis diagram.
3. Consider a block code $(7,4)$ whose generator matrix is given as

$$
G=\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(I). Find all code words of the code.
(II). Find H , the parity check matrix of the code.
(III).What is the error correcting \& error detecting capability of the above code.
(IV). Compute the syndrome for the received vector 1101101. Is this a valid code vector.
4. Write down compression between Amplitude Modulation system or Frequency Modulation system with optimum system with appropriate plots \& figures.
5. Explain Viterbi Convolutional Decoding Algorithm with appropriate examples.

Integral University, Lucknow

III Mid Semester Examination 2012-2013

INFORMATION THEORY AND CODING (EC-031)

Year : Final Year Electronics \& Communication Engineering
Maximum Marks: 30
Time: 90 Minutes
Note: Attempt any three questions. Make figures, data sheets \& graphs where it needed.

1. Fig 1.1 shows a Huffman tree. What is the code word for each symbols A, B, C, D, E, F \& G represented by this Huffman tree. What are their individual codeword length.

Fig 1.1
2. A computer executes four instructions that are designated by the code words $(00,01,10$, $11)$. Assuming that the instructions are used independently with probabilities $(0.5,0.125$, $0.25,0.125)$, calculate the percentage by which the number of an optimum source code. Construct a Huffman code to realize the reduction.
3. Write down shot notes on Feedback Communication.
4. (A). Let a single parity check code, a single parity bit is appended to a block of k message bits ($m_{1}, m_{2}, m_{3}, m_{4}, \ldots \ldots \ldots m_{k}$). The single parity but b_{1} is chose so that the code word satisfied the even parity rule :

$$
m_{1} \oplus m_{2} \oplus m_{3} \oplus \quad \oplus m_{k} \oplus b_{1}=0
$$

For $\mathrm{k}=4$, set up the 2^{k} possible code words in the code defined by this rule.
(B). Let consider a Hamming code $(7,4)$ which is define as the generator polynomial

$$
g(X)=1+X+X^{3}
$$

The code word 0111001 is sent over a noisy channel, producing the received code vector 0101001 that has a single error. Determine the syndrome polynomial $s(X)$ for this received code word and show that it is identical to the error polynomial $\mathrm{e}(\mathrm{X})$.
5. Fig 1.2 shows the encoder for a rate $\mathrm{r}=0.5$, constraint length $\mathrm{K}=4$ convolution code. Determine the encoder output produced by the message sequence 10111

Fig 1.2

